Universidade Católica de Pelotas Programa de Pós-Graduação em Letras

A EPÊNTESE VOCÁLICA NA AQUISIÇÃO DAS PLOSIVAS FINAIS DO INGLÊS (L2): TRATAMENTO PELA OT ESTOCÁSTICA E PELA GRAMÁTICA HARMÔNICA

Ubiratã Kickhöfel Alves

(ukalves@gmail.com)

II SIS-VOGAIS

Maio-2009

Introdução

Motivação:

O dado de aquisição de L2 como fonte de insumos para a formalização dos modelos fonológicos.

O Fenômeno:

A epêntese vocálica na interlíngua português-inglês.

(KOERICH, 2002; SILVEIRA, 2004; VINHAS et al., 2004a,b; CARDOSO, 2005; BAPTISTA & SILVA-FILHO, 2006; HORA, LUCENA & PEDROSA, 2007; ALVES, 2004, 2008)

Objetivo:

Verificar o processo de aquisição sob dois diferentes Algoritmos de Aprendizagem, um associado à OT Estocástica (BOERSMA & HAYES, 2001) e outro associado à Gramática Harmônica (LEGENDRE, MIYATA & SMOLENSKY, 1990; SMOLENSKY & LEGENDRE, 2006).

A Gramática Harmônica

- A Gramática Harmônica (LEGENDRE, MIYATA & SMOLENSKY, 1990; SMOLENSKY & LEGENDRE, 2006) não opera sob a noção de ranking, mas sim através da soma dos pesos das restrições.
- O candidato ótimo é aquele que apresenta o maior valor de Harmonia, que corresponde à soma dos pesos de todas as restrições violadas por cada candidato.

A Gramática Harmônica

(01)

	2	1	Н
/CtC/	*CT	MAX	
ℱ CC	20	-1	-1
CtC	-1		-2

•Coetzee & Pater (2009, p. 16)

O candidato ótimo é aquele que apresentar maior valor de Harmonia (mais próximo de zero).

OT e HG: diferenças

- Na OT Estocástica (BOERSMA & HAYES, 2001), os valores numéricos das restrições são convertidos em ranking, ao contrário do que acontece na HG.
- Na OT, a seleção do candidato ótimo se dá a partir do valor do ranking. Na HG, o candidato ótimo emerge a partir da avaliação do somatório dos pesos das violações incorridas por cada candidato. O número de violações em cada restrição exerce, portanto, papel fundamental.

(02)

$/C_{1}V_{2}C_{3}C_{4}/ \\$	NoCoda 1.5	MAX 1.0
HG: □ [.C ₁ V ₂ C ₃ C ₄ .]	-1	
OT: ☞ [.C ₁ V ₂ .]		-2

OT e HG: diferenças

• A seleção do candidato ótimo, via HG, considera os efeitos da **cumulatividade** referente às violações por parte de cada candidato:

(03)

		1.5	1	1	
	In-1	Constraint-1	Constraint-2	Constraint-3	
呣	Out-11	-1		i.	-1.5
	Out-12		-1	-1	-2

Pater (2009, p. 9)

HG e sistemas estringentes

- A ação comulativa dos pesos é de grande relevância ao considerarmos sistemas de restrições estringentes, como é o caso da aquisição das codas da interlíngua português-inglês que queremos aqui pesquisar.
- Assumimos que o sistema de coda do português pode ser expresso através de restrições estringentes advindas do processo de Alinhamento Harmônico (PRINCE & SMOLENSKY, 1993/2004; DELACY, 2002, 2006; MCCARTHY, 2008)

(04)

| Vogais > Semivogais > Líquidas > Nasais > Fricativas > Plosivas |

* (stop)coda, * (stop,fric)coda, * (stop,fric,nas)coda, *(stop,fric,nas,liq)coda

	*{stop}coda	*{stop,fric}coda	*{stop,fric, nas} _{@da}	*{stop,fric, nas, liq} _{@da}
kal				*
kam		i	*	*
kas		* !	*	*
kat	*	*	*	*

Questões de pesquisa

- Ambos os algoritmos conseguem convergir para o estágio final de aquisição das codas de plosivas do inglês (=0% de epêntese)?
- Ambos os algoritmos conseguem expressar a variação nos padrões de output, característica dos estágios de interlíngua?
- Há diferenças, em termos de valores numéricos assumidos pelas restrições, em função do algoritmo adotado? Como tais possíveis diferenças podem ser explicadas tendo-se por base os pressupostos de cada modelo (OT e HG) e a noção de estringência das restrições utilizadas?
- Quais as implicações dos dois algoritmos adotados para a caracterização do processo de aquisição de linguagem?

Os algoritmos de aprendizagem

- Software Praat version 5.1.04 (BOERSMA & WEENINK, 2009)
- Ambos do tipo error-driven.
- Ambos sujeitos a um valor de ruído (noise), capaz de dar conta dos dados de variação, quando houver cruzamento entre as faixas de valores possíveis de serem assumidos pelas restrições.
- Valor da plasticidade: 0.1
- \OT: Gradual Learning Algorithm (BOERSMA & HAYES, 2001)
- <u>HG</u>: Noisy HG Linear OT: impede que pesos negativos exerçam papel no cálculo do valor da Harmonia (cf. PRINCE 2002; KELLER, 2006).

1	0		١
- (2	
- 1	V	U	ı
•			,

Ĭ	i_1	C ₁	C ₂ -2.0	
	011	-1		-1.0
	012		-1	+2.0
	₽ \$ 013	-1	-2	+3.0

•(BOERSMA & PATER, 2008, p.19)

Rodadas dos algoritmos: Procedimentos

Simulação (1): Aquisição do sistema do PB.

Simulação (2): Aquisição do sistema do inglês (aquisição plena, com 0% de epêntese).

Simulação (3): Aquisição do sistema do inglês incompleta (epênteses variando com plosivas finais).

Rodadas dos algoritmos: Simulação 1

Sistema inicial:

Valor das restrições de marcação = 100;

Valor das restrições de fidelidade = 50;

Sistema-alvo:

100% de epênteses após plosivas finais no input;

0 % de epênteses após segmentos finais de outras sonoridades (fricativas, líquidas, etc).

Portanto: *{stop}_{coda} >> DEP >> *{stop,fric}_{coda}

Simulação 1: Resultados

• OT-GLA

i i	ranking value	disharmony
*{stop}coda	100.000	98.913
Max	85.563	84.576
Dep	75.547	78.134
*{stop,fric}coda	65.868	61.291
*{stop,fric,nas}coda	49.666	46.936
*{stop,fric,nas,liq}co	da 38.889	40.687

top	*{stop}coda	Max	Dep	*{stop,fric}coda	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda
top	*!			*	*	*
r topi			*			
to		*!				

mis	*{stop}coda	Max	Dep	*{stop,fric}coda	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda
⊕ mis				*	*	*
misi	S.	i: s.	*!			
mi		*!				

Simulação 1: Resultados

1	ranking value	disharmony
*{stop}coda	100.000	100.552
Max	85.563	83.442
Dep	75.547	72.361
*{stop,fric}coda	65.868	64.394
*{stop,fric,nas}coda	49.666	49.259
*{stop,fric,nas,liq}coo	da 38.889	40.127

top	*{stop}coda	Max	Dep	*{stop,fric}coda	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda
top	*!			*	*	**
r topi			*			
to		*!	8			

mis	*{stop}coda	Max	Dep	*{stop,fric}coda	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda
⊕ mis				*	*	*
misi			*!			
mi		*!				

j	ranking value	disharmony
*{stop}coda	100.000	100.443
Max	85.563	88.068
Dep	75.547	77.563
*{stop,fric}coda	65.868	66.666
*{stop,fric,nas}coda	49.666	49.937
*{stop,fric,nas,liq}co	da 38.889	37.368

top	*{stop}coda	Max	Dep	*{stop,fric}coda	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda
top	*!			*	*	*
r topi			*			
to		*!				

mis	*{stop}coda	Max	Dep	*{stop,fric}coda	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda
r mis				*	*	*
misi			*!			
mi		*!				

Ainda que, a cada avaliação dos candidatos, as restrições possam assumir diferentes pesos, os outputs ótimos são sempre os mesmos, uma vez que o valor de DEP é suficientemente inferior ao de *{stop}_{coda} e superior ao de *{stop,fric}_{coda}.

Simulação 1: Resultados (HG)

nking value	disharmony
100.572	102.439
100.000	101.855
90.920	92.617
47.445	45.519
20.410	14.814
8.508	7.364
	100.000 90.920 47.445 20.410

top	Max	*{stop}coda	Dep	*{stop,fric}coda	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda	
top		*		*	*	*	-169.552
ræ topi			*		G		-92.617
to	*					3	-102.439

mis	Max	*{stop}coda	Dep	*{stop,fric}coda	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda	
⊕ mis				*	*	*	-67.696
misi			*				-92.617
mi	*						-102.439

- •No primeiro tableau, o candidato ótimo, com epêntese, apresenta o valor mais alto de Harmonia (o mais próximo de zero). O candidato com a plosiva final apresenta um valor de harmonia igual à soma dos valores de todas as restrições de marcação.
- •DEP já apresenta um valor de ranqueamento bastante superior à soma dos valores de *{stop,fric}_{coda}, *{stop,fric,nas}_{coda} e *{stop,fric,nas,liq}_{coda}. Isso explica a emergência de [mis] no segundo tableau, bem como os valores baixos das restrições de marcação.
- •Adquirir as codas finais com plosivas significa promover DEP e demover *{stop}_{coda}, bem como diminuir os pesos das outras restrições estringentes, até que o valor de DEP seja superior à soma dos pesos de todas as restrições de marcação.

Simulação 1: Resultados

)	ranking value	disharmony
Max	100.572	99.193
*{stop}coda	100.000	98.645
Dep	90.920	89.474
*{stop,fric}coda	47.445	43.885
*{stop,fric,nas}coda	20.410	17.171
*{stop,fric,nas,liq}coo	da 8.508	10.357

top	Max	*{stop}coda	Dep	*{stop,fric}coda	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda	
top		*		*	*	*	-170.057
r topi			*		8		-89.474
to	*					3	-99.193

mis	Max	*{stop}coda	Dep	*{stop,fric}coda	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda	
⊈ mis				*	*	*	-71.413
misi			*			2	-89.474
mi	*						-99.193

,	ranking value	disharmony	plasticity
*{stop}coda	100.000	100.570	1.000000
Max	100.572	100.116	1.000000
Dep	90.920	89.295	1.000000
*{stop,fric}coda	47.445	43.518	1.000000
*{stop,fric,nas}coda	20.410	21.606	1.000000
*{stop,fric,nas,liq}coo	la 8.508	9.381	1.000000

top	*{stop}coda	Max	Dep	*{stop,fric}coda	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda	
top	*		0:	*	0.0	*	-175.075
⊕ topi			*			Í	-89.295
to		*					-100.116

mis	*{stop}coda	Max	Dep	*{stop,fric}coda	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda	
⊕ mis				*	*	*	-74.505
misi			*	3		1:	-89.295
mi		*					-100.116

Ainda que haja variações nos valores dos pontos de seleção (em função do ruído), o candidato ótimo é sempre o mesmo. Verificase que há uma distância considerável entre o valor de harmonia do candidato ótimo e a dos outros candidatos.

Simulação 2

Valor inicial das restrições (sistema inicial):

Resultados da simulação anterior

Sistema-alvo:

Gramática categórica, em que os segmentos plosivos finais são produzidos com 0% de epêntese (estágio final da aquisição).

Simulação 2 (OT-GLA)

ran	iking value	disharmony	_
Max	90.411	89.941	
Dep	90.798	89.303	
*{stop}coda	79.900	79.384	
*{stop,fric}coda	45.768	45.200	
*{stop,fric,nas}coda	29.566	29.300	
*{stop,fric,nas,liq}coda	18.789	18.189	

top	Max	Dep	*{stop}coda	*{stop,fric}coda	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda
r top			*	**	*	*
topi		*!				
to	*!					

mis	Max	Dep	*{stop}coda	*{stop,fric}coda	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda
r mis				*	*	*
misi		*!				
mi	*!					

- •Tanto Max quanto DEP apresentam valores de ranqueamento bastante superiores ao de *{stop}_{coda}, de modo que, ainda que sejam realizadas várias avaliações, a relação hierárquica entre a restrição de marcação e as de fidelidade não seja alterada.
- A demoção de *{stop}_{coda} implica a demoção de todas as outras restrições de marcação, por estringência.

Simulação 2 - OT

	ranking value	disharmony
Dep	90.798	90.901
Max	90.411	88.433
*{stop}coda	79.900	80.959
*{stop,fric}coda	45.768	45.330
*{stop,fric,nas}cod:	a 29.566	31.768
*{stop,fric,nas,liq}co	da 18.789	20.614

top	Dep	Max	*{stop}coda	*{stop,fric}coda	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda
r top			*	(*)	*	*
topi	*!					
to		*!				

mis	Dep	Max	*{stop}coda	*{stop,fric}coda	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda
r⊚= mis				*	*	*
misi	*!					
mi		*!				

anking value	disharmon
90.411	92.230
90.798	88.981
79.900	78.849
45.768	50.163
29.566	29.558
la 18.789	17.381
	90.798 79.900 45.768

top	Max	Dep	*{stop}coda	*{stop,fric}coda	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda
r⊋= top			*	*	*	*
topi		*!				
to	*!					

mis	Max	Dep	*{stop}coda	*{stop,fric}coda	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda
⊕ mis				*	*	*
misi		*!				
mi	*!					

•Sendo muito próximos os valores de ranqueamento de DEP e Max, pode haver a mudança do status hierárquico entre essas duas restrições a cada momento de avaliação. Tal fato, entretanto, não altera a escolha dos candidatos ótimos, uma vez que as restrições de marcação já apresentam um valor bem inferior aos das restrições de fidelidade.

Simulação 2 - HG

			ranking valu	ie disharmony)		
	Dep	8	108.811	108.420			
	Max		108.591	108.236			
*{:	stop}c	oda	74.090	76.080			
*{ste	p,fric	coda	21.535	19.587			
*{stop	fric,n	as}co	da -5.500	-5.874			
*{stop,f	ric,na	s,liq}c	coda -17.402	-17.854			
top	Dep	Max	*{stop}coda	*{stop,fric}coda	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda]
r top			*	*	(*)	*	-95.66
topi	*						-108.4
to		*					-108.2
							
mis	Dep	Max	*{stop}coda	*{stop,fric}coda	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda	
⊋= mis				*	*	*	-19.58
misi	*						-108.4
mi		*					-108.2

- •Adquirir as codas de plosivas da L2 implica, portanto, promover fidelidade e demover marcação de modo que a soma dos valores de todas as restrições de marcação seja consideravelmente mais baixa do que os pesos de DEP ou MAX.
- •Conforme vemos acima, o valor de Harmonia dos candidatos não está considerando os pesos negativos das restrições. Vê-se que o valor de harmonia do candidato [mis] é equivalente ao peso da restrição *{stop,fric}_{coda}.

Simulação 2 - HG

rai	nking value	disharmony	•
Max	108.591	109.671	
Dep	108.811	107.550	
*{stop}coda	74.090	76.674	
*{stop,fric}coda	21.535	22.228	
*{stop,fric,nas}coda	-5.500	-5.378	
*{stop,fric,nas,liq}coda	-17.402	-16.189	
*{stop}coda *{stop,fric}coda *{stop,fric,nas}coda	74.090 21.535 -5.500	76.674 22.228 -5.378	

top	Max	Dep	*{stop}coda	*{stop,fric}coda	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda	
r top			*	*	*	*	-98.902
topi		*				;	-107.550
to	*		22			5	-109.671

mis	Max	Dep	*{stop}coda	*{stop,fric}coda	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda	
⊈ mis				*	*	*	-22.228
misi		*					-107.550
mi	*)	-109.671

anking value	disharmony
108.811	107.059
108.591	106.620
74.090	77.497
21.535	19.247
-5.500	-6.557
la -17.402	-16.661
	108.591 74.090 21.535

top	Dep	Max	*{stop}coda	*{stop,fric}coda	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda	
r top		Î	*	*	*	*	-96.744
topi	*						-107.059
to		*					-106.620

mis	Dep	Max	*{stop}coda	*{stop,fric}coda	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda	ä
r mis				*	*	*	-19.247
misi	*						-107.05
mi		*					-106.62

 Assim como no GLA, uma vez que MAX e DEP apresentam valores ranqueamento muito próximos, o ordenamento dessas duas restrições pode variar. Tal fato não afeta a escolha do output ótimo, uma vez que o valor do somatório das restrições de marcação é bastante inferior aos valores de cada uma das restrições de fidelidade.

Simulação 3

Estado inicial:

Resultado da Simulação 1 (PB)

Estado final:

Estágio da gramática em desenvolvemento, com outputs variáveis.

Simulação 3 - Dados

Dados de Aquisição:

Banco de dados de Alves & Lucena (2009)

- 12 aprendizes da região de Pelotas/RS nível elementar (cf. Allan, 2004)
- Leitura de palavras monossilábicas, encerradas por consoantes plosivas, na frase-veículo "The word is...".
- Resultados:

Produção da plosiva em coda: 73% (286/392)

Produção de epêntese:27% (106/392)

Simulação 3 - OT

,	ranking value	disharmony
Max	92.259	92.961
Dep	85.290	85.904
*{stop}coda	83.562	85.493
*{stop,fric}coda	49.430	48.367
*{stop,fric,nas}coda	33.228	29.618
*{stop,fric,nas,liq}coo	da 22.451	26.775

top	Max	Dep	*{stop}coda	*{stop,fric}coda	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda
r top			*	*	*	*
topi		*!				
to	*!					

mis	Max	Dep	*{stop}coda	*{stop,fric}coda	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda
r mis				*	*	*:
misi		*!				
mi	*!					

• Dep e $*\{stop\}_{coda}$ apresentam valores de ranqueamento bastante próximos, o que possibilita a variação. No momento de avaliação acima expresso, DEP apresenta um valor de ponto de seleção superior ao de $*\{stop\}_{coda}$.

Simulação 3 - OT

anking value	disharmony
92.259	92.747
85.290	87.310
83.562	83.851
49.430	52.349
33.228	32.034
a 22.451	23.906
	85.290 83.562 49.430

top	Max	Dep	*{stop}coda	*{stop,fric}coda	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda
r top			*	*	*	*
topi		*!				
to	*!					

mis	Max	Dep	*{stop}coda	*{stop,fric}coda	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda
⊕ mis				*	*	*
misi		*!				
mi	*!					

7	anking value	disharmon
Max	92.259	93.773
*{stop}coda	83.562	87.313
Dep	85.290	81.222
*{stop,fric}coda	49.430	49.797
*{stop,fric,nas}coda	33.228	34.277
*{stop,fric,nas,lig}coo	la 22.451	25.798

top	Max	*{stop}coda	Dep	*{stop,fric}coda	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda
top		*!	a .	*		*
ra≔ topi		72	*			
to	*!					

mis	Max	*{stop}coda	Dep	*{stop,fric}coda	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda
⊕ mis				*	*	*
misi			*!			
mi	*!		7			

- •Em função da proximidade dos valores de DEP e *{stop}_{coda}, no primeiro momento de avaliação, DEP>>*{stop}_{coda}. Disso resulta o output com a plosiva em coda.
- •Já no segundo momento de avaliação, *{stop}_{coda} >> DEP. Disso resulta o output com epêntese.

Simulação 3 - HG

	ranking value	disharmony
Max	111.251	111.394
Dep	103.394	102.936
*{stop/coda}	76.847	76.752
*{stop,fric/coda}	24.292	24.678
*{stop,fric,nas}cod	a -2.743	-2.597
*{stop,fric,nas,liq}co	da -14.645	-12.172

top	Max	Dep	*{stop/coda}	*{stop,fric/coda}	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda	
r top			*	*	*	*	-101.430
topi		*				į.	-102.936
to	*						-111.394

mis	Max	Dep	*{stop/coda}	*{stop,fric/coda}	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda	
r∰ mis				*	*	*	-24.678
misi		*					-102.936
mi	*						-111.394

• Ainda que o valor de ranqueamento de DEP se mostre bastante distante do de *{stop}_{coda} (condição essa que, à luz da OT-GLA, implicaria a ausência de epênteses), A SOMA das violações das restrições de marcação (agindo cumulativamente) se mostra muito próxima do valor de DEP, única restrição violada pelo candidato com epêntese. Disso pode resultar a variação entre formas de output.

Simulação 3 - HG

	ranking value	disharmony
Max	111.251	109.941
Dep	103.394	103.648
*{stop/coda}	76.847	77.314
*{stop,fric/coda}	24.292	20.522
*{stop,fric,nas}cod	a -2.743	-5.421
*{stop,fric,nas,liq}co	da -14.645	-18.360

top	Max	Dep	*{stop/coda}	*{stop,fric/coda}	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda	
r⊋= top			*	*	*	.*	-97.836
topi		*					-103.648
to	*			20			-109.941

mis	Max	Dep	*{stop/coda}	*{stop,fric/coda}	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda	
⊕ mis				*	*	*	-20.522
misi		*			8		-103.648
mi	*					Î	-109.941

	ranking value	disharmony
Max	111.251	110.131
Dep	103.394	100.677
*{stop/coda}	76.847	79.669
*{stop,fric/coda}	24.292	26.630
*{stop,fric,nas}cod	a -2.743	-2.650
*{stop,fric,nas,liq}co	da -14.645	-14.739

top	Max	Dep	*{stop/coda}	*{stop,fric/coda}	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda	
top			*	*	(*)	(*)	-106.299
⇔ topi		*					-100.677
to	*						-110.131

mis	Max	Dep	*{stop/coda}	*{stop,fric/coda}	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda	
⊈ mis	E 3.			*	*	*	-26.630
misi		*					-100.67
mi	*						-110.131

Em ambos os momentos de avaliação, DEP apresenta pesos com valores superiores aos de *{stop}_{coda}. À luz do GLA, tal fato seria condição suficiente para garantir a ausência de epênteses.

Entretanto, ao passo que, na primeira avaliação, o valor de Harmonia do candidato sem epêntese se mostra maior do que o do candidato com a vogal, a relação contrária é observada no segundo momento de avaliação. Disso resulta a variação no output.

Simulação 3 - HG

	ranking value	disharmony
Max	111.251	109.941
Dep	103.394	103.648
*{stop/coda}	76.847	77.314
*{stop,fric/coda}	24.292	20.522
*{stop,fric,nas}cod	-2.743	-5.421
*{stop,fric,nas,liq}co	da -14.645	-18.360

top	Max	Dep	*{stop/coda}	*{stop,fric/coda}	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda	
r⊋= top			*	*	*		-97.836
topi		*					-103.648
to	*						-109.941

mis	Max	Dep	*{stop/coda}	*{stop,fric/coda}	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda	
⊕ mis				*	*	*	-20.522
misi		*			8		-103.648
mi	*						-109.941

	ranking value	disharmony
Max	111.251	110.131
Dep	103.394	100.677
*{stop/coda}	76.847	79.669
*{stop,fric/coda}	24.292	26.630
*{stop,fric,nas}cod	a -2.743	-2.650
*{stop,fric,nas,liq}co	da -14.645	-14.739

top	Max	Dep	*{stop/coda}	*{stop,fric/coda}	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda	
top			*	*	(*)	*	-106.299
topi delimited to the second control of the second co		*					-100.677
to	*						-110.131

mis	Max	Dep	*{stop/coda}	*{stop,fric/coda}	*{stop,fric,nas}coda	*{stop,fric,nas,liq}coda	
⊕ mis				*	*	*	-26.630
misi		*		-			-100.677
mi	*				j j	j	-110.131

A variação no output é, portanto, resultado da ação cumulativa dos pesos das restrições de marcação.

Vê-se, na escolha do candidato com epêntese como ótimo, uma configuração de escolha de output ótimo que não se faz possível à luz do GLA, uma vez que, sob tal algoritmo, os pesos devem ser convertidos em rankings. Fica claro, assim, o "efeito de gangue" das restrições de marcação na Gramática Harmônica.

Ambos os algoritmos conseguem convergir para o estágio final de aquisição das codas de plosivas do inglês (=0% de epêntese)?

Sim, ambos os algoritmos convergem para o estágio inicial do processo de aquisição de L2 (=L1) e se mostram capazes de expressar a aquisição categórica das codas da L2.

Ambos os algoritmos conseguem expressar a variação nos padrões de output, característica dos estágios de interlíngua?

Sim. Os dois algoritmos se mostraram capazes de expressar a ocorrência de 27% de epênteses, verificada nos dados empíricos. Isso pôde ser visto através da proximidade dos valores dos pesos das restrições, no GLA, e da proximidade dos valores de Harmonia de cada candidato, na HG.

Há diferenças, em termos de valores numéricos assumidos pelas restrições, em função do algoritmo adotado? Como tais possíveis diferenças podem ser explicadas tendo-se por base os pressupostos de cada modelo (OT e HG) e a noção de estringência das restrições utilizadas?

Uma vez que a seleção dos candidatos segue critérios diferentes na OT e na HG, os valores finais atribuídos pelos algoritmos aos pesos das restrições se mostram bastante diferentes. Veja-se, por exemplo, os valores finais fornecidos pelos dois algoritmos na simulação da aquisição plena das codas da L2:

r	anking value	disharmony
Max	90.411	89.941
Dep	90.798	89.303
*{stop}coda	79.900	79.384
*{stop,fric}coda	45.768	45.200
*{stop,fric,nas}coda	29.566	29.300
*{stop,fric,nas,liq}cod	a 18.789	18.189

9	ranking value	disharmony
Dep	108.811	108.420
Max	108.591	108.236
*{stop}coda	74.090	76.080
*{stop,fric}coda	21.535	19.587
*{stop,fric,nas}coda	-5.500	-5.874
*{stop,fric,nas,liq}co		-17.854

OT HG

Os valores dos pesos das restrições de fidelidade foram superiores no OT-GLA, ao passo que os valores dos pesos das restrições de marcação se mostraram inferiores no algoritmo vinculado à HG. Tal diferença pode ser explicada pelo próprio critério de seleção de candidatos adotado por cada modelo: ao passo que, para a OT-GLA, basta que uma restrição apresente um valor de peso bastante superior à de outra para que se evite a variação, na HG o que interessa é o valor de Harmonia, determinada pelo somatório dos pesos das violações incorridas por cada um dos candidatos.

Isso explica o valor bastante baixo do peso das restrições de marcação: considerando-se um sistema de estringência para codas, em que a violação da restrição de caráter mais específico implica, necessariamente, violações nos membros de caráter mais geral, para que as plosivas finais sejam categóricas, é necessário que o somatório de todas as restrições de marcação seja consideravelmente inferior ao peso da restrição contra epênteses.

 Quais as implicações dos dois algoritmos adotados para a caracterização do processo de aquisição de linguagem?

Mais do que uma questão de meros valores numéricos, a adoção de um ou outro algoritmo tem implicações sérias sobre o entendimento do processo de aquisição, pelo fato de envolver não somente questões referentes ao funcionamento da gramática, mas também por despertar questionamentos referentes às teorias de base cognitiva que sustentam cada um dos modelos.

- Quais as concepções de cognição que permeiam os dois modelos?
 Como o processo de aquisição pode ser expresso por cada uma dessas concepções?
 - Quais as consequências do uso de um modelo ou de outro para a explicação das Tipologias de Línguas?
- Como a adoção de um modelo ou de outro pode exercer influência, inclusive, nas restrições a serem adotadas na análise (ex: conjunção local)?

Referências

ALLAN, Dave. Oxford Placement Test 1. Oxford University Press, 2004.

ALVES, Ubirată Kickhöfel. O papel da instrução explícita na aquisição do inglês como L2 – evidências fornecidas pela Teoria da Otimidade. Dissertação (Mestrado em Letras). Universidade Católica de Pelotas, Pelotas, 2004.

. A aquisição das seqüências finais de obstruintes do inglês (L2) por falantes do Sul do Brasil: análise via Teoria da Otimidade. 337 f. Tese (Doutorado). Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, 2008.

; LUCENA, Rubens M. Banco de Dados Aquinglês. 2009.

BAPTISTA, Barbara O.; SILVA-FILHO, Jair L. A. The influence of voicing and sonority relationships on the production of English final consonants. In: BAPTISTA, Barbara O. WATKINS, Michael A. English with a Latin beat: Studies in Portuguese/Spanish-English Interphonology, John Benjamins, 2006, p. 73-90.

BOERSMA, Paul; HAYES, Bruce. Empirical tests of the Gradual Learning Algorithm. Linguistic Inquiry, n. 32, p. 45-86, 2001.

PATER, Joe. Convergence properties of a Gradual Learning Algorithm for Harmonic Grammar. Manuscrito, University of Amsterdam e University of Massachusetts – Amherst, 2008.

____; WEENINK, David. PRAAT – Doing phonetics by computer – version 5.1.04. 2009.

CARDOSO, Walcir. The variable acquisition of English word-final stops by Brazilian Portuguese speakers. In: DEKIDTSPOTTER, Laurent et al. (eds.). Proceedings of the 7th Generative Approaches to Second Language Acquisition Conference (GASLA 2004). Somerville, MA: Cascadilla Proceedings Project, 2005.

COETZEE, Andries; PATER, Joe. The place of variation in phonological theory. *In:* GOLDSMITH, John; RIGGLE, Jason; YU, Alan (org.). *The handbook of Phonological Theory – 2nd edition*. Blackwell, 2009.

DE LACY, Paul. The formal expression of markedness. Tese (Doutorado). University of Massachusetts, Amherst, 2002.

. Markedness: reduction and preservation in phonology. Cambridge University Press, 2006.

HORA, Dermeval; LUCENA, Rubens M.; PEDROSA, Juliene L. R. A inserção vocálica após a coda silábica: uma abordagem variacionista. Anais do Simpósio Internacional sobre Vogais. João Pessoa – PB, 2007.

KELLER, Frank. 2006. Linear Optimality Theory as a model of gradience in grammar. In: FANSELOW, Gisbert; FÉRY, Caroline; VOGEL, Ralph; SCHLESEWSKY, Matthias (orgs.). Gradience in grammar: Generative perspectives, Oxford: Oxford University Press 2006, p. 270-287. [ROA-679]

KOERICH, Rosana Denise. Perception and Production of Vowel Epenthesis in Word-Final Single Consonant Codas. 261 f. Tese: Doutorado em Letras. Universidade Federal de Santa Catarina. Florianópolis, 2002.

LEGENDRE, Géraldine; MIYATA, Yoshiro; SMOLENSKY, Paul. Can connectionism contribute to syntax? Harmonic Grammar, with an application. In: ZIOLKOWSKI, M.; NOSKE, M. DEATON, K. (orgs.). *Proceedings of the 26th Regional Meeting of the Chicago Linguistic Society*. Chicago: Chicago Linguistic Society, 1990.

McCARTHY, John. Doing OT. Blackwell, 2008.

PATER, Joe. Weighted constraints in Generative Linguistics. Cognitive Science, 2009.

PRINCE, Alan. Anything goes. In: HONMA, Takeru; OKAZAKI, Masao; TABATA, Toshiyuki; TANAKA, Shin-ichi (orgs.). New century of phonology and phonological theory, Tokyo: Kaitakusha, 2002, p. 66-9-. [ROA-536]

; SMOLENSKY, Paul. Optimality Theory: Constraint interaction in generative grammar. Manuscrito: Rutgers University and University of Colorado at Boulder, 1993. Versão revista: Blackwell, 2004.

SILVEIRA, Rosane. The influence of pronunciation instruction on the perception and the production of English word-final consonants. 274 f. Tese de Doutorado. Universidade Federal de Santa Catarina. Florianópolis. 2004.

SMOLENSKY, Paul; LEGENDRE, Géraldine. The harmonic mind: From neural computation to Optimality-Theoretic grammar. Cambridge, MA: MIT Press, 2006

VINHAS, Luciana; MESQUITA, Michel; BONILHA, Giovana. Aquisição de estruturas silábicas complexas por aprendizes de inglês como língua estrangeira. Trabalho apresentado na XV Semana de Letras. Maringá: Universidade Estadual de Maringá, 2004.

FARIAS, Miriam; SOARES, Alícia; BONILHA, Giovana. A aquisição do Inglês como língua estrangeira: acionamento de restrições potenciais. Trabalho apresentado no III FILE. Pelotas: UCPel, 2004.